Runge-Kutta Methods for solving ODEs

ODE Solvers

Runge Kutta

* Euler Method (1st order)

* Midpoint Method (2nd order)

 RK4 (4th order) - SciPy library

 RKA45 (adaptive time step 4th and 5th order) - SciPy library - BEST general purpose solver

Symplectic
e Euler-Cromer-Aspel Method (1st order)
o Leapfrog (2nd order) - BEST for Hamiltonian (including Energy-Conserving) systems

Stiff Solvers

e Radau (5th order) - SciPy library - Best all-purpose solver for stiff equations
 BDF (order1-5) - SciPy library

Adaptive Time Step Runge Kutta 45

Adaptive Time Step - Runge Kutta 45

Method:

1. Step forward using RK4 method yrry 11
Recalculate using a 5th-order Runge Kutta method ygpgs 11

Find error between the two methods: € = | yrx4 101 — YrK4 41 |

> WD

Test if € > atol + rtol - |y, |, then reduce the time step Af by half and go

back to step 1.
e atol = absolute tolerance
* rtol = relative tolerannce

5. Test ife <atol+rtol-|y,|, then accept the value ygg4,,1 and go to the
next step

Use the SciPy library to implement the RK45 method

1. Load solve_ivp from SciPy library

from scipy.integrate import solve_1ivp

2. Call solve_ivp to perform integration

_ - initial Integration
time limits conditions method

derivative function\ \ / /

sol = solve_ivp(deriv_sho, (0,tmax), y@, method='RK45', args=params,

atol=le-4, rtol=le-3) N\
\ | parameters for
absolute relative derivative funvtion

tolerance tolerance

Use the SciPy library to implement the RK45 method

sol = solve_ivp(deriv_sho, (0,tmax), y@, method='RK45', args=params,
atol=1le-4,rtol=1e-3)

3. Extract time and solution from the solution object sol:

t = sol.t # extract times
X = sol.y[0,:] # extract positions
v = sol.yl[1,:] # extract velocities

import numpy as np
import matplotlib.pyplot as plt

from scipy.integrate import solve_1ivp

Complete code to
impl em ent RK45 HH####HH#H Parameters ########H

m =1 # mass
integration k =1 spring constant
tmax = 50 maximum time
.01 time step
initial position
initial velocity

dt =
X0 —
v

Il
SIS
H H H H H

params = np.array([m,k]) # bundle derivative parameters together
y@ = np.array([x0,v0]) # bundle initial conditions together

#H##H#HHE Perform RK45 Integration #######H##

sol = solve_ivp(deriv_sho, (0,tmax), y@, method='RK45', args=params,
. atol=le-4, rtol=1le-3)

Solution ' t sol.t # extract times

x = sol.yl[0,:] # extract positions

v = sol.yl[1,:] # extract velocities

H#H###A##E Analytic Solution #####H#H##H
omega = np.sqrt(k/m)
X_true = x0 * np.cos(omegaxt)

HHaHaHE Plot Solution #########H
plot_solution(x, x_true, t, "SHO - RK45")

Erroris set by the
absolute and
relative tolerances.

Times are unevenly
distributed

SHO - RK45

1.0 4
0.5) ﬂ /
00 - Numerical
' -~ == Analytic
-0.5 4 \j \/
—1.01 T T T T T T
0 10 20 30 40 50
0.015
0.010 A
0.005 A
0.000 I_l T T T T | —
0 10 20 30 40 50

Erroris set by the
absolute and
relative tolerances.

Times are unevenly
distributed

SHO - RK45

* \ \ ‘e @ I\ I \ I
;o ® i ' B @ I 0
0.5 . \ | \ o ! \ I\ * f ! |
\ : Y TR e I '
00 | Y ' v | e Numerical
. ‘\ 'l \‘ ‘l “ '. \‘ " \‘ " —-—- Ana IYt'C
| / 1 9 | |
-0.5 A1 ‘\ ’ 6 ! \\ ' \ 0 I’ ‘\ " : I,
' , @ ! I ' 9 ! L
I ¥, ' I \ 4 b‘ .\l
0 10 20 30 40 50
0.015 o *°
@ P
¢ P
0.010 A o ® 4 o
@ = o ®
i ® o ®
Jd i
L Y ® i @ P
o’ o ¢ ®
0.000 1 '“ .' ® e . T ° T T
0 10 20 30 40 50

1.0 -

0.5 -

0.0 A

—-0.5 -

—-1.0 1

Did the RK45 do a good job ?

SHO - RK45

Numerical

Analytic
o

[\
o

50

Two factors:

Accuracy - how well the numerical solution
tracks the true solution

Sampling - how often we sample the solution
effects the appearance of the graph.

* The error between the numerical solution and the analytic solution is around 1.5% of
the oscillation's amplitude. This error could be reduced by imposing stricter
tolerances.

* The plotted solution looks “jagged” because of poor sampling. We will show ways to
use the numerical results to "fill out" the full curve using interpolation.

Custom Evaluation Times

SHO - RK45
Adaptive time step methods produce solutions at e R O T
nonuniform times. If you want to generate a 0.5 - 1 "o 1
I t f‘ I d t h t 0 4 ? ® Numerical
solution on uniformly spaced times, you havetwo < oo{ , L e purfds
options: 0.5 - " ! e | y
- . .] [) Q
o option 1: Pass an optional array of times to the 104 9* % @ v s ¢
"solve_ivp() * function. This option modifies the 0 10 20 30 40 50

time-stepping algorithm to include the specified

times

option 2: Turnonthe dense_output option.

This option does not affect the numerical
Integration, but rather allows the user to use
Interpolation to evaluate the solution at any

time they want.

Custom Evaluation Times

SHO - RK45
m . . 1.0
o option 1: Pass an optional array of times to the
\ . ‘ 0.5
solve_ivp() * function. This option modifies the Numer,ca,
. ¥ 0.0+
time-stepping algorithm to include the specified : A"""V“‘
_05 o
times
_1.0 -
40
2.0 - ﬂ
. 1.5 4 (\ A (\
- ,/\/‘\M/\/v\/\/\
0.5 4
ARRR
0 10 20 30 40

t

times = np.linspace(0,tmax,500)

sol = solve_ivp(deriv_sho, (0,tmax), y@, method='RK45', t_eval=times,
args=params, atol=le-6,rtol=1e-6)

t = sol.t # extract times

X = sol.yl[0,:] # extract positions

v = sol.yl[1,:] # extract velocities

Custom Evaluation Times

SHO - RK45
1.0 1
* option 2: Turnonthe dense_output option. - /\
This option does not affect the numerical e — Numerical
integration, but rather allows the user to use . B
Interpolation to evaluate the solution at any e v \/
time they want. 10 10 20 30 40 50
2.0 \
| \[
. A 0 |
E 1.0
0.5
1AARRR
0 10 20 30 20 50

t

sol = solve_ivp(deriv_sho, (0,tmax), y@, method='RK45', dense_output=True,
args=params, atol=le-6,rtol=1e-6)

Extract solution on a regular grid of time values

t = np.linspace(@, tmax, 500) # define time array

y = sol.sol(t) # create a 2D solution array
X

= yl0,:] # extract position from the solution arr

Erroris set by the
absolute and
relative tolerances.

Times are unevenly
distributed

SHO - RK45

1.0 4
0.5 1 A /
0.0 — Numerical
) -~ == Analytic
—-1.0 - T T T T —
0 10 20 30 40 50
le—=5 N
2.0 J
1.5 4
—
o
5 1.0 4
0.5 4
0.0 1 T T T T T T
0 10 20 30 40 50

Application: Chaos Theory

Edward Lorenz Mararet Hamilton
(1917-2008) (1936-)

« MIT Meteorologist * Director MIT Instrument
 Founder of Chaos Theory laboratory

* Developed software for NASAs
Apollo Guidance Computer

* Coined term “software engineer”

Ellen Fetter

 Programmer

 Worked on
Numerical Chaos
Theory with
Lorenz

Lorenz System

Lorenz was looking for a simplified
system of equations to model
convection in the atmosphere, when
he discovered this set of equations:

dx x = flow rate of
— =0y —x) .
dt convection
dy :
— = x(r—2z)—y y = Temp difference
dz z = nonlinearity of
— =Xy — bz
dt Temp profile

o = Prandtl number
r = Rayleigh number
b = scale of the flow

Lorenz invented Chaos Theory to describe
the dynamics of this system

Dynamical Systems

Consider the dynamics of systems that have both:
 dissipation (energy removed from the system)
» external driving (energy added to system)

These systems often have “attractors” which are values toward which the
system evolves over time. These attractors have different forms:

* fixed (equilibrium) points - OD

e |limitcycles -1D

* strange attractors (fractal dimension)

Dynamical Systems

. d*x X
Example: Van der Pol oscillator: — —u(l —x*)—+x=0
dt? dt
approaches single point
Fixed Point 0107y — x
0.05 - 0102.
/’t — 008 ; 0.00 4 | >-o.oz-
~0.05 - ": i} 006 -
6 110 210 310 410 510 6to 710 -0.'075—0.;)50—0.'025 O.OIOO x0.0'25 0.0'50 0.0'75 0.1'00

closed orbit in phase space

Limit Cycle

-20 -15 ~-10 =05 00 05 10 15 20
X

Lorenz System

Perform numerical integration to solve I

for x(7), y(2), z(?): — = o(y — x)
U . dt
* Create a derivative function
. Use the RK45 method Y o r—2—y
* |Interpolate onto a uniform time array d
. - d
Standard parameter values: az _ xy — bz
° ¢ =10 dt
° p=238/3
O r =28
* Plots:

© time series: x(1), y(¢), z(¢)
© phase space: (x,V,)

Lorenz System

Lorenz System r = 28.00

20 -
| H' r,',l‘ \' Mf | n” |
| | '. .I.' I W | | |l l| ||
o R TY | n' """ul-
MWW L L
.\l”““ \,” ' | |I } HH“‘ |\“ HH‘ ¥
0 10 20 30 40 50
20 - l
|) M.‘l 1 ul| ,\ H|| !‘
0- l ,.'l,'I'vr"'L"-',l"f.l‘l"-l,' | (VL N
.J’-“.""'-.‘,’f\,' *, | ,' Wi |.\|.‘|‘| \u .l " || ‘|‘ I lll | ’ ' | | \ l| ' l ' l L' { \f l’) '.|' ‘u
AlARl nt ! N | V| AR
-20 AR i ”\ M
0 10 20 30 40 20
s0{ | , $
'..w.w.'f.'.'“."".’.(.|\". ||l| 1\ H,'H,ul‘ ,,m\l\\ ’.."‘,H'W m
20 - “H”U.m"‘u“"IH‘l'u|;| "\’.l |I‘I'JIL||J"|."”}J|‘tl',l'\|'t‘J‘..l "‘|A |‘ o
0 - ,‘ |
0 10 20 30 40 50

Dynamics do not repeat (aperiodic)

Strange attractor is neither a
fixed point nor a limit cycle. It
has fractal dimension

Sensitivity to Initial Conditions

Small changes to the initial conditions can lead to large changes later

(-an }70, ZO) — (19191)

Ar o e’

20
‘ | 1 11 l'l | "' "
0 - |
................ I \'” ' | | | ""H; \.;’ | I |
0 10 20 30 40 -
20 -
ETIETTI T Y | |
N ' |
,,,,,,,,,,,,,,, Rl | AL
N I | ' |
0 10 20 30 40 20

