Runge-Kutta Methods for solving ODEs




ODE Solvers

Runge Kutta

* Euler Method (1st order)

* Midpoint Method (2nd order)

 RK4 (4th order) - SciPy library

 RKA45 (adaptive time step 4th and 5th order) - SciPy library - BEST general purpose solver

Symplectic
e Euler-Cromer-Aspel Method (1st order)
o Leapfrog (2nd order) - BEST for Hamiltonian (including Energy-Conserving) systems

Stiff Solvers

e Radau (5th order) - SciPy library - Best all-purpose solver for stiff equations
 BDF (order1-5) - SciPy library



Adaptive Time Step Runge Kutta 45



Adaptive Time Step - Runge Kutta 45

Method:

1. Step forward using RK4 method yrry 11
Recalculate using a 5th-order Runge Kutta method ygpgs 11

Find error between the two methods: € = | yrx4 101 — YrK4 41 |

> WD

Test if € > atol + rtol - |y, |, then reduce the time step Af by half and go

back to step 1.
e atol = absolute tolerance
* rtol = relative tolerannce

5. Test ife <atol+rtol-|y,|, then accept the value ygg4,,1 and go to the
next step



Use the SciPy library to implement the RK45 method

1. Load solve_ivp from SciPy library

from scipy.integrate import solve_1ivp

2. Call solve_ivp to perform integration

_ - initial Integration
time limits conditions method

derivative function\ \ / /

sol = solve_ivp(deriv_sho, (0,tmax), y@, method='RK45', args=params,

atol=le-4, rtol=le-3) N\
\ | parameters for
absolute relative derivative funvtion

tolerance tolerance



Use the SciPy library to implement the RK45 method

sol = solve_ivp(deriv_sho, (0,tmax), y@, method='RK45', args=params,
atol=1le-4,rtol=1e-3)

3. Extract time and solution from the solution object sol:

t = sol.t # extract times
X = sol.y[0,:] # extract positions
v = sol.yl[1,:] # extract velocities



import numpy as np
import matplotlib.pyplot as plt

from scipy.integrate import solve_1ivp

Complete code to
impl em ent RK45 HH####HH#H  Parameters  ########H

m =1 # mass
integration k =1 spring constant
tmax = 50 maximum time
.01 time step
initial position
initial velocity

dt =
X0 —
v

Il
SIS
H H H H H

params = np.array([m,k]) # bundle derivative parameters together
y@ = np.array([x0,v0]) # bundle initial conditions together

#H##H#HHE  Perform RK45 Integration #######H##

sol = solve_ivp(deriv_sho, (0,tmax), y@, method='RK45', args=params,
. atol=le-4, rtol=1le-3)

Solution ' t sol.t # extract times

x = sol.yl[0,:] # extract positions

v = sol.yl[1,:] # extract velocities

H#H###A##E  Analytic Solution #####H#H##H
omega = np.sqrt(k/m)
X_true = x0 * np.cos(omegaxt)

HHaHaHE  Plot Solution  #########H
plot_solution(x, x_true, t, "SHO - RK45")



Erroris set by the
absolute and
relative tolerances.

Times are unevenly
distributed
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Erroris set by the
absolute and
relative tolerances.

Times are unevenly
distributed
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Did the RK45 do a good job ?
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Two factors:

Accuracy - how well the numerical solution
tracks the true solution

Sampling - how often we sample the solution
effects the appearance of the graph.

* The error between the numerical solution and the analytic solution is around 1.5% of
the oscillation's amplitude. This error could be reduced by imposing stricter
tolerances.

* The plotted solution looks “jagged” because of poor sampling. We will show ways to
use the numerical results to "fill out" the full curve using interpolation.



Custom Evaluation Times

SHO - RK45
Adaptive time step methods produce solutions at e R O T
nonuniform times. If you want to generate a 0.5 - 1 "o 1
I t f‘ I d t h t 0 4 ? ® Numerical
solution on uniformly spaced times, you havetwo < oo{ , L e purfds
options: 0.5 - " ! e | y
- . . ] [ ) Q
o option 1: Pass an optional array of times to the 104 9* % @ v s ¢
"solve_ivp() * function. This option modifies the 0 10 20 30 40 50

time-stepping algorithm to include the specified

times

option 2: Turnonthe dense_output option.

This option does not affect the numerical
Integration, but rather allows the user to use
Interpolation to evaluate the solution at any

time they want.




Custom Evaluation Times
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times = np.linspace(0,tmax,500)

sol = solve_ivp(deriv_sho, (0,tmax), y@, method='RK45', t_eval=times,
args=params, atol=le-6,rtol=1e-6)

t = sol.t # extract times

X = sol.yl[0,:] # extract positions

v = sol.yl[1,:] # extract velocities



Custom Evaluation Times

SHO - RK45
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sol = solve_ivp(deriv_sho, (0,tmax), y@, method='RK45', dense_output=True,
args=params, atol=le-6,rtol=1e-6)

# Extract solution on a regular grid of time values

t = np.linspace(@, tmax, 500) # define time array

y = sol.sol(t) # create a 2D solution array
X

= yl0,:] # extract position from the solution arr
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absolute and
relative tolerances.

Times are unevenly
distributed

SHO - RK45

1.0 4
0.5 1 A /
0.0 —  Numerical
) -~ == Analytic
—-1.0 - T T T T —
0 10 20 30 40 50
le—=5 N
2.0 J
1.5 4
—
o
5 1.0 4
0.5 4
0.0 1 T T T T T T
0 10 20 30 40 50



Application: Chaos Theory

Edward Lorenz Mararet Hamilton
(1917-2008 ) (1936-)

« MIT Meteorologist * Director MIT Instrument
 Founder of Chaos Theory laboratory

* Developed software for NASAs
Apollo Guidance Computer

* Coined term “software engineer”

Ellen Fetter

 Programmer

 Worked on
Numerical Chaos
Theory with
Lorenz



Lorenz System

Lorenz was looking for a simplified
system of equations to model
convection in the atmosphere, when
he discovered this set of equations:

dx x = flow rate of
— =0y —x) .
dt convection
dy :
— = x(r—2z)—y y = Temp difference
dz z = nonlinearity of
— =Xy — bz
dt Temp profile

o = Prandtl number
r = Rayleigh number
b = scale of the flow

Lorenz invented Chaos Theory to describe
the dynamics of this system



Dynamical Systems

Consider the dynamics of systems that have both:
 dissipation (energy removed from the system)
» external driving (energy added to system)

These systems often have “attractors” which are values toward which the
system evolves over time. These attractors have different forms:

* fixed (equilibrium) points - OD

e |limitcycles -1D

* strange attractors (fractal dimension)



Dynamical Systems
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Example: Van der Pol oscillator: — —u(l —x*)—+x=0
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Lorenz System

Perform numerical integration to solve I

for x(7), y(2), z(?): — = o(y — x)
U . dt
* Create a derivative function
. Use the RK45 method Y o r—2—y
* |Interpolate onto a uniform time array d
. - d
Standard parameter values: az _ xy — bz
° ¢ =10 dt
° p=238/3
O r =28
* Plots:

© time series: x(1), y(¢), z(¢)
© phase space: (x,V, )



Lorenz System

Lorenz System r = 28.00
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Dynamics do not repeat (aperiodic)

Strange attractor is neither a
fixed point nor a limit cycle. It
has fractal dimension



Sensitivity to Initial Conditions

Small changes to the initial conditions can lead to large changes later
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