
Runge-Kutta Methods for solving ODEs



Runge Kutta  
• Euler Method (1st order) 
• Midpoint Method (2nd order) 
• RK4 (4th order) - SciPy library 
• RK45 (adaptive time step 4th and 5th order) - SciPy library - BEST general purpose solver 

Symplectic 
• Euler-Cromer-Aspel Method (1st order) 
• Leapfrog (2nd order) - BEST for Hamiltonian (including Energy-Conserving) systems 

Stiff Solvers 
• Radau (5th order) - SciPy library - Best all-purpose solver for stiff equations 
• BDF (order 1-5) - SciPy library

ODE Solvers



Adaptive Time Step Runge Kutta 45



Adaptive Time Step - Runge Kutta 45
Method: 

1. Step forward using RK4 method  

2. Recalculate using a 5th-order Runge Kutta method  

3. Find error between the two methods:  

4. Test if , then reduce the time step  by half and go 
back to step 1. 

• atol = absolute tolerance 
• rtol = relative tolerannce 

5. Test if , then accept the value  and go to the 
next step 

yRK4,n+1

yRK5,n+1

ϵ = |yRK4,n+1 − yRK4,n+1 |

ϵ > atol + rtol ⋅ |yn | Δt

ϵ ≤ atol + rtol ⋅ |yn | yRK4,n+1



Use the SciPy library to implement the RK45 method

1. Load solve_ivp from SciPy library

2. Call solve_ivp to perform integration

derivative function
time limits

initial 
conditions

integration 
method

parameters for 
derivative funvtionabsolute 

tolerance
relative 

tolerance



Use the SciPy library to implement the RK45 method

3. Extract time and solution from the solution object sol:



Complete code to 
implement RK45 
integration

Solution



Error is set by the 
absolute and 
relative tolerances. 

Times are unevenly 
distributed
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absolute and 
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Did the RK45 do a good job ?

• The error between the numerical solution and the analytic solution is around 1.5% of 
the oscillation's amplitude. This error could be reduced by imposing stricter 
tolerances. 

• The plotted solution looks “jagged” because of poor sampling. We will show ways to 
use the numerical results to "fill out" the full curve using interpolation.  

Two factors: 
Accuracy - how well the numerical solution 
tracks the true solution 
Sampling - how often we sample the solution 
effects the appearance of the graph. 



Custom Evaluation Times

Adaptive time step methods produce solutions at 
nonuniform times. If you want to generate a 
solution on uniformly spaced times, you have two 
options: 
• option 1:  Pass an optional array of times to the 

`solve_ivp()` function. This option modifies the 
time-stepping algorithm to include the specified 
times 

• option 2:  Turn on the `dense_output` option. 
This option does not affect the numerical 
integration, but rather allows the user to use 
interpolation to evaluate the solution at any 
time they want.



Custom Evaluation Times
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Custom Evaluation Times

• option 2:  Turn on the `dense_output` option. 
This option does not affect the numerical 
integration, but rather allows the user to use 
interpolation to evaluate the solution at any 
time they want.



Error is set by the 
absolute and 
relative tolerances. 

Times are unevenly 
distributed



Application:  Chaos Theory

Margaret Hamilton 
(1936- ) 
• Director MIT Instrument 

laboratory 
• Developed software for NASA’s 

Apollo Guidance Computer 
• Coined term “software engineer”

Edward Lorenz 
(1917-2008 ) 
• MIT Meteorologist 
• Founder of Chaos Theory

Ellen Fetter 
• Programmer  
• Worked on 

Numerical Chaos 
Theory with 
Lorenz



Lorenz System

dx
dt

= σ(y − x)

dy
dt

= x(r − z) − y

dz
dt

= xy − bz

Lorenz was looking for a simplified 
system of equations to model 
convection in the atmosphere, when 
he discovered this set of equations:

x = flow rate of 
convection

y = Temp difference

z = nonlinearity of 
Temp profile

Prandtl number  
Rayleigh number 
scale of the flow

σ =
r =
b =

Lorenz invented Chaos Theory to describe 
the dynamics of this system



Dynamical Systems

Consider the dynamics of systems that have both: 
•  dissipation (energy removed from the system) 
• external driving (energy added to system)

These systems often have “attractors” which are values toward which the 
system evolves over time. These attractors have different forms: 
•  fixed (equilibrium) points - 0D 
• limit cycles - 1D 
• strange attractors (fractal dimension)



Dynamical Systems

Example:  Van der Pol oscillator:
d2x
dt2

− μ(1 − x2)
dx
dt

+ x = 0

μ = − 0.2

μ = 0.8

Fixed Point

Limit Cycle
closed orbit in phase space

approaches single point



Lorenz System

dx
dt

= σ(y − x)

dy
dt

= x(r − z) − y

dz
dt

= xy − bz

Perform numerical integration to solve 
for : 
• Create a derivative function 
• Use the RK45 method 
• Interpolate onto a uniform time array 
• Standard parameter values: 

   
   
   

• Plots: 
  time series:   
  phase space:   

x(t), y(t), z(t)

σ = 10
b = 8/3
r = 28

x(t), y(t), z(t)
(x, y, z)



Lorenz System

Dynamics do not repeat (aperiodic) Strange attractor is neither a 
fixed point nor a limit cycle. It 
has fractal dimension 



Sensitivity to Initial Conditions

Small changes to the initial conditions can lead to large changes later 

(x0, y0, z0) = (1,1,1)

(x0, y0, z0) = (1,1,1.000001)

Δr ∝ eλt


