
Runge-Kutta Methods for solving ODEs

Runge Kutta
• Euler Method (1st order)
• Midpoint Method (2nd order)
• RK4 (4th order) - SciPy library
• RK45 (adaptive time step 4th and 5th order) - SciPy library - BEST general purpose solver

Symplectic
• Euler-Cromer-Aspel Method (1st order)
• Leapfrog (2nd order) - BEST for Hamiltonian (including Energy-Conserving) systems

Stiff Solvers
• Radau (5th order) - SciPy library - Best all-purpose solver for stiff equations
• BDF (order 1-5) - SciPy library

ODE Solvers

Adaptive Time Step Runge Kutta 45

Adaptive Time Step - Runge Kutta 45
Method:

1. Step forward using RK4 method

2. Recalculate using a 5th-order Runge Kutta method

3. Find error between the two methods:

4. Test if , then reduce the time step by half and go
back to step 1.

• atol = absolute tolerance
• rtol = relative tolerannce

5. Test if , then accept the value and go to the
next step

yRK4,n+1

yRK5,n+1

ϵ = |yRK4,n+1 − yRK4,n+1 |

ϵ > atol + rtol ⋅ |yn | Δt

ϵ ≤ atol + rtol ⋅ |yn | yRK4,n+1

Use the SciPy library to implement the RK45 method

1. Load solve_ivp from SciPy library

2. Call solve_ivp to perform integration

derivative function
time limits

initial
conditions

integration
method

parameters for
derivative funvtionabsolute

tolerance
relative

tolerance

Use the SciPy library to implement the RK45 method

3. Extract time and solution from the solution object sol:

Complete code to
implement RK45
integration

Solution

Error is set by the
absolute and
relative tolerances.

Times are unevenly
distributed

Error is set by the
absolute and
relative tolerances.

Times are unevenly
distributed

Did the RK45 do a good job ?

• The error between the numerical solution and the analytic solution is around 1.5% of
the oscillation's amplitude. This error could be reduced by imposing stricter
tolerances.

• The plotted solution looks “jagged” because of poor sampling. We will show ways to
use the numerical results to "fill out" the full curve using interpolation.

Two factors:
Accuracy - how well the numerical solution
tracks the true solution
Sampling - how often we sample the solution
effects the appearance of the graph.

Custom Evaluation Times

Adaptive time step methods produce solutions at
nonuniform times. If you want to generate a
solution on uniformly spaced times, you have two
options:
• option 1: Pass an optional array of times to the

`solve_ivp()` function. This option modifies the
time-stepping algorithm to include the specified
times

• option 2: Turn on the `dense_output` option.
This option does not affect the numerical
integration, but rather allows the user to use
interpolation to evaluate the solution at any
time they want.

Custom Evaluation Times

• option 1: Pass an optional array of times to the
`solve_ivp()` function. This option modifies the
time-stepping algorithm to include the specified
times

Custom Evaluation Times

• option 2: Turn on the `dense_output` option.
This option does not affect the numerical
integration, but rather allows the user to use
interpolation to evaluate the solution at any
time they want.

Error is set by the
absolute and
relative tolerances.

Times are unevenly
distributed

Application: Chaos Theory

Margaret Hamilton
(1936-)
• Director MIT Instrument

laboratory
• Developed software for NASA’s

Apollo Guidance Computer
• Coined term “software engineer”

Edward Lorenz
(1917-2008)
• MIT Meteorologist
• Founder of Chaos Theory

Ellen Fetter
• Programmer
• Worked on

Numerical Chaos
Theory with
Lorenz

Lorenz System

dx
dt

= σ(y − x)

dy
dt

= x(r − z) − y

dz
dt

= xy − bz

Lorenz was looking for a simplified
system of equations to model
convection in the atmosphere, when
he discovered this set of equations:

x = flow rate of
convection

y = Temp difference

z = nonlinearity of
Temp profile

Prandtl number
Rayleigh number
scale of the flow

σ =
r =
b =

Lorenz invented Chaos Theory to describe
the dynamics of this system

Dynamical Systems

Consider the dynamics of systems that have both:
• dissipation (energy removed from the system)
• external driving (energy added to system)

These systems often have “attractors” which are values toward which the
system evolves over time. These attractors have different forms:
• fixed (equilibrium) points - 0D
• limit cycles - 1D
• strange attractors (fractal dimension)

Dynamical Systems

Example: Van der Pol oscillator:
d2x
dt2

− μ(1 − x2)
dx
dt

+ x = 0

μ = − 0.2

μ = 0.8

Fixed Point

Limit Cycle
closed orbit in phase space

approaches single point

Lorenz System

dx
dt

= σ(y − x)

dy
dt

= x(r − z) − y

dz
dt

= xy − bz

Perform numerical integration to solve
for :
• Create a derivative function
• Use the RK45 method
• Interpolate onto a uniform time array
• Standard parameter values:

• Plots:
 time series:
 phase space:

x(t), y(t), z(t)

σ = 10
b = 8/3
r = 28

x(t), y(t), z(t)
(x, y, z)

Lorenz System

Dynamics do not repeat (aperiodic) Strange attractor is neither a
fixed point nor a limit cycle. It
has fractal dimension

Sensitivity to Initial Conditions

Small changes to the initial conditions can lead to large changes later

(x0, y0, z0) = (1,1,1)

(x0, y0, z0) = (1,1,1.000001)

Δr ∝ eλt

